home *** CD-ROM | disk | FTP | other *** search
- /* specfunc/coulomb.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* Author: G. Jungman */
-
- /* Evaluation of Coulomb wave functions F_L(eta, x), G_L(eta, x),
- * and their derivatives. A combination of Steed's method, asymptotic
- * results, and power series.
- *
- * Steed's method:
- * [Barnett, CPC 21, 297 (1981)]
- * Power series and other methods:
- * [Biedenharn et al., PR 97, 542 (1954)]
- * [Bardin et al., CPC 3, 73 (1972)]
- * [Abad+Sesma, CPC 71, 110 (1992)]
- */
- #include <config.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_errno.h>
- #include <gsl/gsl_sf_exp.h>
- #include <gsl/gsl_sf_psi.h>
- #include <gsl/gsl_sf_airy.h>
- #include <gsl/gsl_sf_pow_int.h>
- #include <gsl/gsl_sf_gamma.h>
- #include <gsl/gsl_sf_coulomb.h>
-
- #include "error.h"
-
- /* the L=0 normalization constant
- * [Abramowitz+Stegun 14.1.8]
- */
- static
- double
- C0sq(double eta)
- {
- double twopieta = 2.0*M_PI*eta;
-
- if(fabs(eta) < GSL_DBL_EPSILON) {
- return 1.0;
- }
- else if(twopieta > GSL_LOG_DBL_MAX) {
- return 0.0;
- }
- else {
- gsl_sf_result scale;
- gsl_sf_expm1_e(twopieta, &scale);
- return twopieta/scale.val;
- }
- }
-
-
- /* the full definition of C_L(eta) for any valid L and eta
- * [Abramowitz and Stegun 14.1.7]
- * This depends on the complex gamma function. For large
- * arguments the phase of the complex gamma function is not
- * very accurately determined. However the modulus is, and that
- * is all that we need to calculate C_L.
- *
- * This is not valid for L <= -3/2 or L = -1.
- */
- static
- int
- CLeta(double L, double eta, gsl_sf_result * result)
- {
- gsl_sf_result ln1; /* log of numerator Gamma function */
- gsl_sf_result ln2; /* log of denominator Gamma function */
- double sgn = 1.0;
- double arg_val, arg_err;
-
- if(fabs(eta/(L+1.0)) < GSL_DBL_EPSILON) {
- gsl_sf_lngamma_e(L+1.0, &ln1);
- }
- else {
- gsl_sf_result p1; /* phase of numerator Gamma -- not used */
- gsl_sf_lngamma_complex_e(L+1.0, eta, &ln1, &p1); /* should be ok */
- }
-
- gsl_sf_lngamma_e(2.0*(L+1.0), &ln2);
- if(L < -1.0) sgn = -sgn;
-
- arg_val = L*M_LN2 - 0.5*eta*M_PI + ln1.val - ln2.val;
- arg_err = ln1.err + ln2.err;
- arg_err += GSL_DBL_EPSILON * (fabs(L*M_LN2) + fabs(0.5*eta*M_PI));
- return gsl_sf_exp_err_e(arg_val, arg_err, result);
- }
-
-
- int
- gsl_sf_coulomb_CL_e(double lam, double eta, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(lam <= -1.0) {
- DOMAIN_ERROR(result);
- }
- else if(fabs(lam) < GSL_DBL_EPSILON) {
- /* saves a calculation of complex_lngamma(), otherwise not necessary */
- result->val = sqrt(C0sq(eta));
- result->err = 2.0 * GSL_DBL_EPSILON * result->val;
- return GSL_SUCCESS;
- }
- else {
- return CLeta(lam, eta, result);
- }
- }
-
-
- /* cl[0] .. cl[kmax] = C_{lam_min}(eta) .. C_{lam_min+kmax}(eta)
- */
- int
- gsl_sf_coulomb_CL_array(double lam_min, int kmax, double eta, double * cl)
- {
- int k;
- gsl_sf_result cl_0;
- gsl_sf_coulomb_CL_e(lam_min, eta, &cl_0);
- cl[0] = cl_0.val;
-
- for(k=1; k<=kmax; k++) {
- double L = lam_min + k;
- cl[k] = cl[k-1] * sqrt(L*L + eta*eta)/(L*(2.0*L+1.0));
- }
-
- return GSL_SUCCESS;
- }
-
-
- /* Evaluate the series for Phi_L(eta,x) and Phi_L*(eta,x)
- * [Abramowitz+Stegun 14.1.5]
- * [Abramowitz+Stegun 14.1.13]
- *
- * The sequence of coefficients A_k^L is
- * manifestly well-controlled for L >= -1/2
- * and eta < 10.
- *
- * This makes sense since this is the region
- * away from threshold, and you expect
- * the evaluation to become easier as you
- * get farther from threshold.
- *
- * Empirically, this is quite well-behaved for
- * L >= -1/2
- * eta < 10
- * x < 10
- */
- #if 0
- static
- int
- coulomb_Phi_series(const double lam, const double eta, const double x,
- double * result, double * result_star)
- {
- int kmin = 5;
- int kmax = 200;
- int k;
- double Akm2 = 1.0;
- double Akm1 = eta/(lam+1.0);
- double Ak;
-
- double xpow = x;
- double sum = Akm2 + Akm1*x;
- double sump = (lam+1.0)*Akm2 + (lam+2.0)*Akm1*x;
- double prev_abs_del = fabs(Akm1*x);
- double prev_abs_del_p = (lam+2.0) * prev_abs_del;
-
- for(k=2; k<kmax; k++) {
- double del;
- double del_p;
- double abs_del;
- double abs_del_p;
-
- Ak = (2.0*eta*Akm1 - Akm2)/(k*(2.0*lam + 1.0 + k));
-
- xpow *= x;
- del = Ak*xpow;
- del_p = (k+lam+1.0)*del;
- sum += del;
- sump += del_p;
-
- abs_del = fabs(del);
- abs_del_p = fabs(del_p);
-
- if( abs_del/(fabs(sum)+abs_del) < GSL_DBL_EPSILON
- && prev_abs_del/(fabs(sum)+prev_abs_del) < GSL_DBL_EPSILON
- && abs_del_p/(fabs(sump)+abs_del_p) < GSL_DBL_EPSILON
- && prev_abs_del_p/(fabs(sump)+prev_abs_del_p) < GSL_DBL_EPSILON
- && k > kmin
- ) break;
-
- /* We need to keep track of the previous delta because when
- * eta is near zero the odd terms of the sum are very small
- * and this could lead to premature termination.
- */
- prev_abs_del = abs_del;
- prev_abs_del_p = abs_del_p;
-
- Akm2 = Akm1;
- Akm1 = Ak;
- }
-
- *result = sum;
- *result_star = sump;
-
- if(k==kmax) {
- GSL_ERROR ("error", GSL_EMAXITER);
- }
- else {
- return GSL_SUCCESS;
- }
- }
- #endif /* 0 */
-
-
- /* Determine the connection phase, phi_lambda.
- * See coulomb_FG_series() below. We have
- * to be careful about sin(phi)->0. Note that
- * there is an underflow condition for large
- * positive eta in any case.
- */
- static
- int
- coulomb_connection(const double lam, const double eta,
- double * cos_phi, double * sin_phi)
- {
- if(eta > -GSL_LOG_DBL_MIN/2.0*M_PI-1.0) {
- *cos_phi = 1.0;
- *sin_phi = 0.0;
- GSL_ERROR ("error", GSL_EUNDRFLW);
- }
- else if(eta > -GSL_LOG_DBL_EPSILON/(4.0*M_PI)) {
- const double eps = 2.0 * exp(-2.0*M_PI*eta);
- const double tpl = tan(M_PI * lam);
- const double dth = eps * tpl / (tpl*tpl + 1.0);
- *cos_phi = -1.0 + 0.5 * dth*dth;
- *sin_phi = -dth;
- return GSL_SUCCESS;
- }
- else {
- double X = tanh(M_PI * eta) / tan(M_PI * lam);
- double phi = -atan(X) - (lam + 0.5) * M_PI;
- *cos_phi = cos(phi);
- *sin_phi = sin(phi);
- return GSL_SUCCESS;
- }
- }
-
-
- /* Evaluate the Frobenius series for F_lam(eta,x) and G_lam(eta,x).
- * Homegrown algebra. Evaluates the series for F_{lam} and
- * F_{-lam-1}, then uses
- * G_{lam} = (F_{lam} cos(phi) - F_{-lam-1}) / sin(phi)
- * where
- * phi = Arg[Gamma[1+lam+I eta]] - Arg[Gamma[-lam + I eta]] - (lam+1/2)Pi
- * = Arg[Sin[Pi(-lam+I eta)] - (lam+1/2)Pi
- * = atan2(-cos(lam Pi)sinh(eta Pi), -sin(lam Pi)cosh(eta Pi)) - (lam+1/2)Pi
- *
- * = -atan(X) - (lam+1/2) Pi, X = tanh(eta Pi)/tan(lam Pi)
- *
- * Not appropriate for lam <= -1/2, lam = 0, or lam >= 1/2.
- */
- static
- int
- coulomb_FG_series(const double lam, const double eta, const double x,
- gsl_sf_result * F, gsl_sf_result * G)
- {
- const int max_iter = 800;
- gsl_sf_result ClamA;
- gsl_sf_result ClamB;
- int stat_A = CLeta(lam, eta, &ClamA);
- int stat_B = CLeta(-lam-1.0, eta, &ClamB);
- const double tlp1 = 2.0*lam + 1.0;
- const double pow_x = pow(x, lam);
- double cos_phi_lam;
- double sin_phi_lam;
-
- double uA_mm2 = 1.0; /* uA sum is for F_{lam} */
- double uA_mm1 = x*eta/(lam+1.0);
- double uA_m;
- double uB_mm2 = 1.0; /* uB sum is for F_{-lam-1} */
- double uB_mm1 = -x*eta/lam;
- double uB_m;
- double A_sum = uA_mm2 + uA_mm1;
- double B_sum = uB_mm2 + uB_mm1;
- double A_abs_del_prev = fabs(A_sum);
- double B_abs_del_prev = fabs(B_sum);
- gsl_sf_result FA, FB;
- int m = 2;
-
- int stat_conn = coulomb_connection(lam, eta, &cos_phi_lam, &sin_phi_lam);
-
- if(stat_conn == GSL_EUNDRFLW) {
- F->val = 0.0; /* FIXME: should this be set to Inf too like G? */
- F->err = 0.0;
- OVERFLOW_ERROR(G);
- }
-
- while(m < max_iter) {
- double abs_dA;
- double abs_dB;
- uA_m = x*(2.0*eta*uA_mm1 - x*uA_mm2)/(m*(m+tlp1));
- uB_m = x*(2.0*eta*uB_mm1 - x*uB_mm2)/(m*(m-tlp1));
- A_sum += uA_m;
- B_sum += uB_m;
- abs_dA = fabs(uA_m);
- abs_dB = fabs(uB_m);
- if(m > 15) {
- /* Don't bother checking until we have gone out a little ways;
- * a minor optimization. Also make sure to check both the
- * current and the previous increment because the odd and even
- * terms of the sum can have very different behaviour, depending
- * on the value of eta.
- */
- double max_abs_dA = GSL_MAX(abs_dA, A_abs_del_prev);
- double max_abs_dB = GSL_MAX(abs_dB, B_abs_del_prev);
- double abs_A = fabs(A_sum);
- double abs_B = fabs(B_sum);
- if( max_abs_dA/(max_abs_dA + abs_A) < 4.0*GSL_DBL_EPSILON
- && max_abs_dB/(max_abs_dB + abs_B) < 4.0*GSL_DBL_EPSILON
- ) break;
- }
- A_abs_del_prev = abs_dA;
- B_abs_del_prev = abs_dB;
- uA_mm2 = uA_mm1;
- uA_mm1 = uA_m;
- uB_mm2 = uB_mm1;
- uB_mm1 = uB_m;
- m++;
- }
-
- FA.val = A_sum * ClamA.val * pow_x * x;
- FA.err = fabs(A_sum) * ClamA.err * pow_x * x + 2.0*GSL_DBL_EPSILON*fabs(FA.val);
- FB.val = B_sum * ClamB.val / pow_x;
- FB.err = fabs(B_sum) * ClamB.err / pow_x + 2.0*GSL_DBL_EPSILON*fabs(FB.val);
-
- F->val = FA.val;
- F->err = FA.err;
-
- G->val = (FA.val * cos_phi_lam - FB.val)/sin_phi_lam;
- G->err = (FA.err * fabs(cos_phi_lam) + FB.err)/fabs(sin_phi_lam);
-
- if(m >= max_iter)
- GSL_ERROR ("error", GSL_EMAXITER);
- else
- return GSL_ERROR_SELECT_2(stat_A, stat_B);
- }
-
-
- /* Evaluate the Frobenius series for F_0(eta,x) and G_0(eta,x).
- * See [Bardin et al., CPC 3, 73 (1972), (14)-(17)];
- * note the misprint in (17): nu_0=1 is correct, not nu_0=0.
- */
- static
- int
- coulomb_FG0_series(const double eta, const double x,
- gsl_sf_result * F, gsl_sf_result * G)
- {
- const int max_iter = 800;
- const double x2 = x*x;
- const double tex = 2.0*eta*x;
- gsl_sf_result C0;
- int stat_CL = CLeta(0.0, eta, &C0);
- gsl_sf_result r1pie;
- int psi_stat = gsl_sf_psi_1piy_e(eta, &r1pie);
- double u_mm2 = 0.0; /* u_0 */
- double u_mm1 = x; /* u_1 */
- double u_m;
- double v_mm2 = 1.0; /* nu_0 */
- double v_mm1 = tex*(2.0*M_EULER-1.0+r1pie.val); /* nu_1 */
- double v_m;
- double u_sum = u_mm2 + u_mm1;
- double v_sum = v_mm2 + v_mm1;
- double u_abs_del_prev = fabs(u_sum);
- double v_abs_del_prev = fabs(v_sum);
- int m = 2;
- double u_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(u_sum);
- double v_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(v_sum);
- double ln2x = log(2.0*x);
-
- while(m < max_iter) {
- double abs_du;
- double abs_dv;
- double m_mm1 = m*(m-1.0);
- u_m = (tex*u_mm1 - x2*u_mm2)/m_mm1;
- v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*eta*(2*m-1)*u_m)/m_mm1;
- u_sum += u_m;
- v_sum += v_m;
- abs_du = fabs(u_m);
- abs_dv = fabs(v_m);
- u_sum_err += 2.0 * GSL_DBL_EPSILON * abs_du;
- v_sum_err += 2.0 * GSL_DBL_EPSILON * abs_dv;
- if(m > 15) {
- /* Don't bother checking until we have gone out a little ways;
- * a minor optimization. Also make sure to check both the
- * current and the previous increment because the odd and even
- * terms of the sum can have very different behaviour, depending
- * on the value of eta.
- */
- double max_abs_du = GSL_MAX(abs_du, u_abs_del_prev);
- double max_abs_dv = GSL_MAX(abs_dv, v_abs_del_prev);
- double abs_u = fabs(u_sum);
- double abs_v = fabs(v_sum);
- if( max_abs_du/(max_abs_du + abs_u) < 40.0*GSL_DBL_EPSILON
- && max_abs_dv/(max_abs_dv + abs_v) < 40.0*GSL_DBL_EPSILON
- ) break;
- }
- u_abs_del_prev = abs_du;
- v_abs_del_prev = abs_dv;
- u_mm2 = u_mm1;
- u_mm1 = u_m;
- v_mm2 = v_mm1;
- v_mm1 = v_m;
- m++;
- }
-
- F->val = C0.val * u_sum;
- F->err = C0.err * fabs(u_sum);
- F->err += fabs(C0.val) * u_sum_err;
- F->err += 2.0 * GSL_DBL_EPSILON * fabs(F->val);
-
- G->val = (v_sum + 2.0*eta*u_sum * ln2x) / C0.val;
- G->err = (fabs(v_sum) + fabs(2.0*eta*u_sum * ln2x)) / fabs(C0.val) * fabs(C0.err/C0.val);
- G->err += (v_sum_err + fabs(2.0*eta*u_sum_err*ln2x)) / fabs(C0.val);
- G->err += 2.0 * GSL_DBL_EPSILON * fabs(G->val);
-
- if(m == max_iter)
- GSL_ERROR ("error", GSL_EMAXITER);
- else
- return GSL_ERROR_SELECT_2(psi_stat, stat_CL);
- }
-
-
- /* Evaluate the Frobenius series for F_{-1/2}(eta,x) and G_{-1/2}(eta,x).
- * Homegrown algebra.
- */
- static
- int
- coulomb_FGmhalf_series(const double eta, const double x,
- gsl_sf_result * F, gsl_sf_result * G)
- {
- const int max_iter = 800;
- const double rx = sqrt(x);
- const double x2 = x*x;
- const double tex = 2.0*eta*x;
- gsl_sf_result Cmhalf;
- int stat_CL = CLeta(-0.5, eta, &Cmhalf);
- double u_mm2 = 1.0; /* u_0 */
- double u_mm1 = tex * u_mm2; /* u_1 */
- double u_m;
- double v_mm2, v_mm1, v_m;
- double f_sum, g_sum;
- double tmp1;
- gsl_sf_result rpsi_1pe;
- gsl_sf_result rpsi_1p2e;
- int m = 2;
-
- gsl_sf_psi_1piy_e(eta, &rpsi_1pe);
- gsl_sf_psi_1piy_e(2.0*eta, &rpsi_1p2e);
-
- v_mm2 = 2.0*M_EULER - M_LN2 - rpsi_1pe.val + 2.0*rpsi_1p2e.val;
- v_mm1 = tex*(v_mm2 - 2.0*u_mm2);
-
- f_sum = u_mm2 + u_mm1;
- g_sum = v_mm2 + v_mm1;
-
- while(m < max_iter) {
- double m2 = m*m;
- u_m = (tex*u_mm1 - x2*u_mm2)/m2;
- v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*m*u_m)/m2;
- f_sum += u_m;
- g_sum += v_m;
- if( f_sum != 0.0
- && g_sum != 0.0
- && (fabs(u_m/f_sum) + fabs(v_m/g_sum) < 10.0*GSL_DBL_EPSILON)) break;
- u_mm2 = u_mm1;
- u_mm1 = u_m;
- v_mm2 = v_mm1;
- v_mm1 = v_m;
- m++;
- }
-
- F->val = Cmhalf.val * rx * f_sum;
- F->err = Cmhalf.err * fabs(rx * f_sum) + 2.0*GSL_DBL_EPSILON*fabs(F->val);
-
- tmp1 = f_sum*log(x);
- G->val = -rx*(tmp1 + g_sum)/Cmhalf.val;
- G->err = fabs(rx)*(fabs(tmp1) + fabs(g_sum))/fabs(Cmhalf.val) * fabs(Cmhalf.err/Cmhalf.val);
-
- if(m == max_iter)
- GSL_ERROR ("error", GSL_EMAXITER);
- else
- return stat_CL;
- }
-
-
- /* Evolve the backwards recurrence for F,F'.
- *
- * F_{lam-1} = (S_lam F_lam + F_lam') / R_lam
- * F_{lam-1}' = (S_lam F_{lam-1} - R_lam F_lam)
- * where
- * R_lam = sqrt(1 + (eta/lam)^2)
- * S_lam = lam/x + eta/lam
- *
- */
- static
- int
- coulomb_F_recur(double lam_min, int kmax,
- double eta, double x,
- double F_lam_max, double Fp_lam_max,
- double * F_lam_min, double * Fp_lam_min
- )
- {
- double x_inv = 1.0/x;
- double fcl = F_lam_max;
- double fpl = Fp_lam_max;
- double lam_max = lam_min + kmax;
- double lam = lam_max;
- int k;
-
- for(k=kmax-1; k>=0; k--) {
- double el = eta/lam;
- double rl = sqrt(1.0 + el*el);
- double sl = el + lam*x_inv;
- double fc_lm1;
- fc_lm1 = (fcl*sl + fpl)/rl;
- fpl = fc_lm1*sl - fcl*rl;
- fcl = fc_lm1;
- lam -= 1.0;
- }
-
- *F_lam_min = fcl;
- *Fp_lam_min = fpl;
- return GSL_SUCCESS;
- }
-
-
- /* Evolve the forward recurrence for G,G'.
- *
- * G_{lam+1} = (S_lam G_lam - G_lam')/R_lam
- * G_{lam+1}' = R_{lam+1} G_lam - S_lam G_{lam+1}
- *
- * where S_lam and R_lam are as above in the F recursion.
- */
- static
- int
- coulomb_G_recur(const double lam_min, const int kmax,
- const double eta, const double x,
- const double G_lam_min, const double Gp_lam_min,
- double * G_lam_max, double * Gp_lam_max
- )
- {
- double x_inv = 1.0/x;
- double gcl = G_lam_min;
- double gpl = Gp_lam_min;
- double lam = lam_min + 1.0;
- int k;
-
- for(k=1; k<=kmax; k++) {
- double el = eta/lam;
- double rl = sqrt(1.0 + el*el);
- double sl = el + lam*x_inv;
- double gcl1 = (sl*gcl - gpl)/rl;
- gpl = rl*gcl - sl*gcl1;
- gcl = gcl1;
- lam += 1.0;
- }
-
- *G_lam_max = gcl;
- *Gp_lam_max = gpl;
- return GSL_SUCCESS;
- }
-
-
- /* Evaluate the first continued fraction, giving
- * the ratio F'/F at the upper lambda value.
- * We also determine the sign of F at that point,
- * since it is the sign of the last denominator
- * in the continued fraction.
- */
- static
- int
- coulomb_CF1(double lambda,
- double eta, double x,
- double * fcl_sign,
- double * result,
- int * count
- )
- {
- const double CF1_small = 1.e-30;
- const double CF1_abort = 1.0e+05;
- const double CF1_acc = 2.0*GSL_DBL_EPSILON;
- const double x_inv = 1.0/x;
- const double px = lambda + 1.0 + CF1_abort;
-
- double pk = lambda + 1.0;
- double F = eta/pk + pk*x_inv;
- double D, C;
- double df;
-
- *fcl_sign = 1.0;
- *count = 0;
-
- if(fabs(F) < CF1_small) F = CF1_small;
- D = 0.0;
- C = F;
-
- do {
- double pk1 = pk + 1.0;
- double ek = eta / pk;
- double rk2 = 1.0 + ek*ek;
- double tk = (pk + pk1)*(x_inv + ek/pk1);
- D = tk - rk2 * D;
- C = tk - rk2 / C;
- if(fabs(C) < CF1_small) C = CF1_small;
- if(fabs(D) < CF1_small) D = CF1_small;
- D = 1.0/D;
- df = D * C;
- F = F * df;
- if(D < 0.0) {
- /* sign of result depends on sign of denominator */
- *fcl_sign = - *fcl_sign;
- }
- pk = pk1;
- if( pk > px ) {
- *result = F;
- GSL_ERROR ("error", GSL_ERUNAWAY);
- }
- ++(*count);
- }
- while(fabs(df-1.0) > CF1_acc);
-
- *result = F;
- return GSL_SUCCESS;
- }
-
-
- #if 0
- static
- int
- old_coulomb_CF1(const double lambda,
- double eta, double x,
- double * fcl_sign,
- double * result
- )
- {
- const double CF1_abort = 1.e5;
- const double CF1_acc = 10.0*GSL_DBL_EPSILON;
- const double x_inv = 1.0/x;
- const double px = lambda + 1.0 + CF1_abort;
-
- double pk = lambda + 1.0;
-
- double D;
- double df;
-
- double F;
- double p;
- double pk1;
- double ek;
-
- double fcl = 1.0;
-
- double tk;
-
- while(1) {
- ek = eta/pk;
- F = (ek + pk*x_inv)*fcl + (fcl - 1.0)*x_inv;
- pk1 = pk + 1.0;
- if(fabs(eta*x + pk*pk1) > CF1_acc) break;
- fcl = (1.0 + ek*ek)/(1.0 + eta*eta/(pk1*pk1));
- pk = 2.0 + pk;
- }
-
- D = 1.0/((pk + pk1)*(x_inv + ek/pk1));
- df = -fcl*(1.0 + ek*ek)*D;
-
- if(fcl != 1.0) fcl = -1.0;
- if(D < 0.0) fcl = -fcl;
-
- F = F + df;
-
- p = 1.0;
- do {
- pk = pk1;
- pk1 = pk + 1.0;
- ek = eta / pk;
- tk = (pk + pk1)*(x_inv + ek/pk1);
- D = tk - D*(1.0+ek*ek);
- if(fabs(D) < sqrt(CF1_acc)) {
- p += 1.0;
- if(p > 2.0) {
- printf("HELP............\n");
- }
- }
- D = 1.0/D;
- if(D < 0.0) {
- /* sign of result depends on sign of denominator */
- fcl = -fcl;
- }
- df = df*(D*tk - 1.0);
- F = F + df;
- if( pk > px ) {
- GSL_ERROR ("error", GSL_ERUNAWAY);
- }
- }
- while(fabs(df) > fabs(F)*CF1_acc);
-
- *fcl_sign = fcl;
- *result = F;
- return GSL_SUCCESS;
- }
- #endif /* 0 */
-
-
- /* Evaluate the second continued fraction to
- * obtain the ratio
- * (G' + i F')/(G + i F) := P + i Q
- * at the specified lambda value.
- */
- static
- int
- coulomb_CF2(const double lambda, const double eta, const double x,
- double * result_P, double * result_Q, int * count
- )
- {
- int status = GSL_SUCCESS;
-
- const double CF2_acc = 4.0*GSL_DBL_EPSILON;
- const double CF2_abort = 2.0e+05;
-
- const double wi = 2.0*eta;
- const double x_inv = 1.0/x;
- const double e2mm1 = eta*eta + lambda*(lambda + 1.0);
-
- double ar = -e2mm1;
- double ai = eta;
-
- double br = 2.0*(x - eta);
- double bi = 2.0;
-
- double dr = br/(br*br + bi*bi);
- double di = -bi/(br*br + bi*bi);
-
- double dp = -x_inv*(ar*di + ai*dr);
- double dq = x_inv*(ar*dr - ai*di);
-
- double A, B, C, D;
-
- double pk = 0.0;
- double P = 0.0;
- double Q = 1.0 - eta*x_inv;
-
- *count = 0;
-
- do {
- P += dp;
- Q += dq;
- pk += 2.0;
- ar += pk;
- ai += wi;
- bi += 2.0;
- D = ar*dr - ai*di + br;
- di = ai*dr + ar*di + bi;
- C = 1.0/(D*D + di*di);
- dr = C*D;
- di = -C*di;
- A = br*dr - bi*di - 1.;
- B = bi*dr + br*di;
- C = dp*A - dq*B;
- dq = dp*B + dq*A;
- dp = C;
- if(pk > CF2_abort) {
- status = GSL_ERUNAWAY;
- break;
- }
- ++(*count);
- }
- while(fabs(dp)+fabs(dq) > (fabs(P)+fabs(Q))*CF2_acc);
-
- if(Q < CF2_abort*GSL_DBL_EPSILON*fabs(P)) {
- status = GSL_ELOSS;
- }
-
- *result_P = P;
- *result_Q = Q;
- return status;
- }
-
-
- /* WKB evaluation of F, G. Assumes 0 < x < turning point.
- * Overflows are trapped, GSL_EOVRFLW is signalled,
- * and an exponent is returned such that:
- *
- * result_F = fjwkb * exp(-exponent)
- * result_G = gjwkb * exp( exponent)
- *
- * See [Biedenharn et al. Phys. Rev. 97, 542-554 (1955), Section IV]
- *
- * Unfortunately, this is not very accurate in general. The
- * test cases typically have 3-4 digits of precision. One could
- * argue that this is ok for general use because, for instance,
- * F is exponentially small in this region and so the absolute
- * accuracy is still roughly acceptable. But it would be better
- * to have a systematic method for improving the precision. See
- * the Abad+Sesma method discussion below.
- */
- static
- int
- coulomb_jwkb(const double lam, const double eta, const double x,
- gsl_sf_result * fjwkb, gsl_sf_result * gjwkb,
- double * exponent)
- {
- const double llp1 = lam*(lam+1.0) + 6.0/35.0;
- const double llp1_eff = GSL_MAX(llp1, 0.0);
- const double rho_ghalf = sqrt(x*(2.0*eta - x) + llp1_eff);
- const double sinh_arg = sqrt(llp1_eff/(eta*eta+llp1_eff)) * rho_ghalf / x;
- const double sinh_inv = log(sinh_arg + sqrt(1.0 + sinh_arg*sinh_arg));
-
- const double phi = fabs(rho_ghalf - eta*atan2(rho_ghalf,x-eta) - sqrt(llp1_eff) * sinh_inv);
-
- const double zeta_half = pow(3.0*phi/2.0, 1.0/3.0);
- const double prefactor = sqrt(M_PI*phi*x/(6.0 * rho_ghalf));
-
- double F = prefactor * 3.0/zeta_half;
- double G = prefactor * 3.0/zeta_half; /* Note the sqrt(3) from Bi normalization */
- double F_exp;
- double G_exp;
-
- const double airy_scale_exp = phi;
- gsl_sf_result ai;
- gsl_sf_result bi;
- gsl_sf_airy_Ai_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &ai);
- gsl_sf_airy_Bi_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &bi);
- F *= ai.val;
- G *= bi.val;
- F_exp = log(F) - airy_scale_exp;
- G_exp = log(G) + airy_scale_exp;
-
- if(G_exp >= GSL_LOG_DBL_MAX) {
- fjwkb->val = F;
- gjwkb->val = G;
- fjwkb->err = 1.0e-3 * fabs(F); /* FIXME: real error here ... could be smaller */
- gjwkb->err = 1.0e-3 * fabs(G);
- *exponent = airy_scale_exp;
- GSL_ERROR ("error", GSL_EOVRFLW);
- }
- else {
- fjwkb->val = exp(F_exp);
- gjwkb->val = exp(G_exp);
- fjwkb->err = 1.0e-3 * fabs(fjwkb->val);
- gjwkb->err = 1.0e-3 * fabs(gjwkb->val);
- *exponent = 0.0;
- return GSL_SUCCESS;
- }
- }
-
-
- /* Asymptotic evaluation of F and G below the minimal turning point.
- *
- * This is meant to be a drop-in replacement for coulomb_jwkb().
- * It uses the expressions in [Abad+Sesma]. This requires some
- * work because I am not sure where it is valid. They mumble
- * something about |x| < |lam|^(-1/2) or 8|eta x| > lam when |x| < 1.
- * This seems true, but I thought the result was based on a uniform
- * expansion and could be controlled by simply using more terms.
- */
- #if 0
- static
- int
- coulomb_AS_xlt2eta(const double lam, const double eta, const double x,
- gsl_sf_result * f_AS, gsl_sf_result * g_AS,
- double * exponent)
- {
- /* no time to do this now... */
- }
- #endif /* 0 */
-
-
-
- /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
-
- int
- gsl_sf_coulomb_wave_FG_e(const double eta, const double x,
- const double lam_F,
- const int k_lam_G, /* lam_G = lam_F - k_lam_G */
- gsl_sf_result * F, gsl_sf_result * Fp,
- gsl_sf_result * G, gsl_sf_result * Gp,
- double * exp_F, double * exp_G)
- {
- const double lam_G = lam_F - k_lam_G;
-
- if(x < 0.0 || lam_F <= -0.5 || lam_G <= -0.5) {
- GSL_SF_RESULT_SET(F, 0.0, 0.0);
- GSL_SF_RESULT_SET(Fp, 0.0, 0.0);
- GSL_SF_RESULT_SET(G, 0.0, 0.0);
- GSL_SF_RESULT_SET(Gp, 0.0, 0.0);
- *exp_F = 0.0;
- *exp_G = 0.0;
- GSL_ERROR ("domain error", GSL_EDOM);
- }
- else if(x == 0.0) {
- gsl_sf_result C0;
- CLeta(0.0, eta, &C0);
- GSL_SF_RESULT_SET(F, 0.0, 0.0);
- GSL_SF_RESULT_SET(Fp, 0.0, 0.0);
- GSL_SF_RESULT_SET(G, 0.0, 0.0); /* FIXME: should be Inf */
- GSL_SF_RESULT_SET(Gp, 0.0, 0.0); /* FIXME: should be Inf */
- *exp_F = 0.0;
- *exp_G = 0.0;
- if(lam_F == 0.0){
- GSL_SF_RESULT_SET(Fp, C0.val, C0.err);
- }
- if(lam_G == 0.0) {
- GSL_SF_RESULT_SET(Gp, 1.0/C0.val, fabs(C0.err/C0.val)/fabs(C0.val));
- }
- GSL_ERROR ("domain error", GSL_EDOM);
- /* After all, since we are asking for G, this is a domain error... */
- }
- else if(x < 1.2 && 2.0*M_PI*eta < 0.9*(-GSL_LOG_DBL_MIN) && fabs(eta*x) < 10.0) {
- /* Reduce to a small lambda value and use the series
- * representations for F and G. We cannot allow eta to
- * be large and positive because the connection formula
- * for G_lam is badly behaved due to an underflow in sin(phi_lam)
- * [see coulomb_FG_series() and coulomb_connection() above].
- * Note that large negative eta is ok however.
- */
- const double SMALL = GSL_SQRT_DBL_EPSILON;
- const int N = (int)(lam_F + 0.5);
- const int span = GSL_MAX(k_lam_G, N);
- const double lam_min = lam_F - N; /* -1/2 <= lam_min < 1/2 */
- double F_lam_F, Fp_lam_F;
- double G_lam_G, Gp_lam_G;
- double F_lam_F_err, Fp_lam_F_err;
- double Fp_over_F_lam_F;
- double F_sign_lam_F;
- double F_lam_min_unnorm, Fp_lam_min_unnorm;
- double Fp_over_F_lam_min;
- gsl_sf_result F_lam_min;
- gsl_sf_result G_lam_min, Gp_lam_min;
- double F_scale;
- double Gerr_frac;
- double F_scale_frac_err;
- double F_unnorm_frac_err;
-
- /* Determine F'/F at lam_F. */
- int CF1_count;
- int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
-
- int stat_ser;
- int stat_Fr;
- int stat_Gr;
-
- /* Recurse down with unnormalized F,F' values. */
- F_lam_F = SMALL;
- Fp_lam_F = Fp_over_F_lam_F * F_lam_F;
- if(span != 0) {
- stat_Fr = coulomb_F_recur(lam_min, span, eta, x,
- F_lam_F, Fp_lam_F,
- &F_lam_min_unnorm, &Fp_lam_min_unnorm
- );
- }
- else {
- F_lam_min_unnorm = F_lam_F;
- Fp_lam_min_unnorm = Fp_lam_F;
- stat_Fr = GSL_SUCCESS;
- }
-
- /* Determine F and G at lam_min. */
- if(lam_min == -0.5) {
- stat_ser = coulomb_FGmhalf_series(eta, x, &F_lam_min, &G_lam_min);
- }
- else if(lam_min == 0.0) {
- stat_ser = coulomb_FG0_series(eta, x, &F_lam_min, &G_lam_min);
- }
- else if(lam_min == 0.5) {
- /* This cannot happen. */
- F->val = F_lam_F;
- F->err = 2.0 * GSL_DBL_EPSILON * fabs(F->val);
- Fp->val = Fp_lam_F;
- Fp->err = 2.0 * GSL_DBL_EPSILON * fabs(Fp->val);
- G->val = G_lam_G;
- G->err = 2.0 * GSL_DBL_EPSILON * fabs(G->val);
- Gp->val = Gp_lam_G;
- Gp->err = 2.0 * GSL_DBL_EPSILON * fabs(Gp->val);
- *exp_F = 0.0;
- *exp_G = 0.0;
- GSL_ERROR ("error", GSL_ESANITY);
- }
- else {
- stat_ser = coulomb_FG_series(lam_min, eta, x, &F_lam_min, &G_lam_min);
- }
-
- /* Determine remaining quantities. */
- Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm;
- Gp_lam_min.val = Fp_over_F_lam_min*G_lam_min.val - 1.0/F_lam_min.val;
- Gp_lam_min.err = fabs(Fp_over_F_lam_min)*G_lam_min.err;
- Gp_lam_min.err += fabs(1.0/F_lam_min.val) * fabs(F_lam_min.err/F_lam_min.val);
- F_scale = F_lam_min.val / F_lam_min_unnorm;
-
- /* Apply scale to the original F,F' values. */
- F_scale_frac_err = fabs(F_lam_min.err/F_lam_min.val);
- F_unnorm_frac_err = 2.0*GSL_DBL_EPSILON*(CF1_count+span+1);
- F_lam_F *= F_scale;
- F_lam_F_err = fabs(F_lam_F) * (F_unnorm_frac_err + F_scale_frac_err);
- Fp_lam_F *= F_scale;
- Fp_lam_F_err = fabs(Fp_lam_F) * (F_unnorm_frac_err + F_scale_frac_err);
-
- /* Recurse up to get the required G,G' values. */
- stat_Gr = coulomb_G_recur(lam_min, GSL_MAX(N-k_lam_G,0), eta, x,
- G_lam_min.val, Gp_lam_min.val,
- &G_lam_G, &Gp_lam_G
- );
-
- F->val = F_lam_F;
- F->err = F_lam_F_err;
- F->err += 2.0 * GSL_DBL_EPSILON * fabs(F_lam_F);
-
- Fp->val = Fp_lam_F;
- Fp->err = Fp_lam_F_err;
- Fp->err += 2.0 * GSL_DBL_EPSILON * fabs(Fp_lam_F);
-
- Gerr_frac = fabs(G_lam_min.err/G_lam_min.val) + fabs(Gp_lam_min.err/Gp_lam_min.val);
-
- G->val = G_lam_G;
- G->err = Gerr_frac * fabs(G_lam_G);
- G->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(G->val);
-
- Gp->val = Gp_lam_G;
- Gp->err = Gerr_frac * fabs(Gp->val);
- Gp->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(Gp->val);
-
- *exp_F = 0.0;
- *exp_G = 0.0;
-
- return GSL_ERROR_SELECT_4(stat_ser, stat_CF1, stat_Fr, stat_Gr);
- }
- else if(x < 2.0*eta) {
- /* Use WKB approximation to obtain F and G at the two
- * lambda values, and use the Wronskian and the
- * continued fractions for F'/F to obtain F' and G'.
- */
- gsl_sf_result F_lam_F, G_lam_F;
- gsl_sf_result F_lam_G, G_lam_G;
- double exp_lam_F, exp_lam_G;
- int stat_lam_F;
- int stat_lam_G;
- int stat_CF1_lam_F;
- int stat_CF1_lam_G;
- int CF1_count;
- double Fp_over_F_lam_F;
- double Fp_over_F_lam_G;
- double F_sign_lam_F;
- double F_sign_lam_G;
-
- stat_lam_F = coulomb_jwkb(lam_F, eta, x, &F_lam_F, &G_lam_F, &exp_lam_F);
- if(k_lam_G == 0) {
- stat_lam_G = stat_lam_F;
- F_lam_G = F_lam_F;
- G_lam_G = G_lam_F;
- exp_lam_G = exp_lam_F;
- }
- else {
- stat_lam_G = coulomb_jwkb(lam_G, eta, x, &F_lam_G, &G_lam_G, &exp_lam_G);
- }
-
- stat_CF1_lam_F = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
- if(k_lam_G == 0) {
- stat_CF1_lam_G = stat_CF1_lam_F;
- F_sign_lam_G = F_sign_lam_F;
- Fp_over_F_lam_G = Fp_over_F_lam_F;
- }
- else {
- stat_CF1_lam_G = coulomb_CF1(lam_G, eta, x, &F_sign_lam_G, &Fp_over_F_lam_G, &CF1_count);
- }
-
- F->val = F_lam_F.val;
- F->err = F_lam_F.err;
-
- G->val = G_lam_G.val;
- G->err = G_lam_G.err;
-
- Fp->val = Fp_over_F_lam_F * F_lam_F.val;
- Fp->err = fabs(Fp_over_F_lam_F) * F_lam_F.err;
- Fp->err += 2.0*GSL_DBL_EPSILON*fabs(Fp->val);
-
- Gp->val = Fp_over_F_lam_G * G_lam_G.val - 1.0/F_lam_G.val;
- Gp->err = fabs(Fp_over_F_lam_G) * G_lam_G.err;
- Gp->err += fabs(1.0/F_lam_G.val) * fabs(F_lam_G.err/F_lam_G.val);
-
- *exp_F = exp_lam_F;
- *exp_G = exp_lam_G;
-
- if(stat_lam_F == GSL_EOVRFLW || stat_lam_G == GSL_EOVRFLW) {
- GSL_ERROR ("overflow", GSL_EOVRFLW);
- }
- else {
- return GSL_ERROR_SELECT_2(stat_lam_F, stat_lam_G);
- }
- }
- else {
- /* x > 2 eta, so we know that we can find a lambda value such
- * that x is above the turning point. We do this, evaluate
- * using Steed's method at that oscillatory point, then
- * use recursion on F and G to obtain the required values.
- *
- * lam_0 = a value of lambda such that x is below the turning point
- * lam_min = minimum of lam_0 and the requested lam_G, since
- * we must go at least as low as lam_G
- */
- const double SMALL = GSL_SQRT_DBL_EPSILON;
- const double C = sqrt(1.0 + 4.0*x*(x-2.0*eta));
- const int N = ceil(lam_F - C + 0.5);
- const double lam_0 = lam_F - GSL_MAX(N, 0);
- const double lam_min = GSL_MIN(lam_0, lam_G);
- double F_lam_F, Fp_lam_F;
- double G_lam_G, Gp_lam_G;
- double F_lam_min_unnorm, Fp_lam_min_unnorm;
- double F_lam_min, Fp_lam_min;
- double G_lam_min, Gp_lam_min;
- double Fp_over_F_lam_F;
- double Fp_over_F_lam_min;
- double F_sign_lam_F;
- double P_lam_min, Q_lam_min;
- double alpha;
- double gamma;
- double F_scale;
-
- int CF1_count;
- int CF2_count;
- int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count);
- int stat_CF2;
- int stat_Fr;
- int stat_Gr;
-
- int F_recur_count;
- int G_recur_count;
-
- double err_amplify;
-
- F_lam_F = SMALL;
- Fp_lam_F = Fp_over_F_lam_F * F_lam_F;
-
- /* Backward recurrence to get F,Fp at lam_min */
- F_recur_count = GSL_MAX(k_lam_G, N);
- stat_Fr = coulomb_F_recur(lam_min, F_recur_count, eta, x,
- F_lam_F, Fp_lam_F,
- &F_lam_min_unnorm, &Fp_lam_min_unnorm
- );
- Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm;
-
- /* Steed evaluation to complete evaluation of F,Fp,G,Gp at lam_min */
- stat_CF2 = coulomb_CF2(lam_min, eta, x, &P_lam_min, &Q_lam_min, &CF2_count);
- alpha = Fp_over_F_lam_min - P_lam_min;
- gamma = alpha/Q_lam_min;
- F_lam_min = F_sign_lam_F / sqrt(alpha*alpha/Q_lam_min + Q_lam_min);
- Fp_lam_min = Fp_over_F_lam_min * F_lam_min;
- G_lam_min = gamma * F_lam_min;
- Gp_lam_min = (P_lam_min * gamma - Q_lam_min) * F_lam_min;
-
- /* Apply scale to values of F,Fp at lam_F (the top). */
- F_scale = F_lam_min / F_lam_min_unnorm;
- F_lam_F *= F_scale;
- Fp_lam_F *= F_scale;
-
- /* Forward recurrence to get G,Gp at lam_G (the top). */
- G_recur_count = GSL_MAX(N-k_lam_G,0);
- stat_Gr = coulomb_G_recur(lam_min, G_recur_count, eta, x,
- G_lam_min, Gp_lam_min,
- &G_lam_G, &Gp_lam_G
- );
-
- err_amplify = CF1_count + CF2_count + F_recur_count + G_recur_count + 1;
-
- F->val = F_lam_F;
- F->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(F->val);
-
- Fp->val = Fp_lam_F;
- Fp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Fp->val);
-
- G->val = G_lam_G;
- G->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(G->val);
-
- Gp->val = Gp_lam_G;
- Gp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Gp->val);
-
- *exp_F = 0.0;
- *exp_G = 0.0;
-
- return GSL_ERROR_SELECT_4(stat_CF1, stat_CF2, stat_Fr, stat_Gr);
- }
- }
-
-
- int
- gsl_sf_coulomb_wave_F_array(double lam_min, int kmax,
- double eta, double x,
- double * fc_array,
- double * F_exp)
- {
- if(x == 0.0) {
- int k;
- *F_exp = 0.0;
- for(k=0; k<=kmax; k++) {
- fc_array[k] = 0.0;
- }
- if(lam_min == 0.0){
- gsl_sf_result f_0;
- CLeta(0.0, eta, &f_0);
- fc_array[0] = f_0.val;
- }
- return GSL_SUCCESS;
- }
- else {
- const double x_inv = 1.0/x;
- const double lam_max = lam_min + kmax;
- gsl_sf_result F, Fp;
- gsl_sf_result G, Gp;
- double G_exp;
-
- int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, 0,
- &F, &Fp, &G, &Gp, F_exp, &G_exp);
-
- double fcl = F.val;
- double fpl = Fp.val;
- double lam = lam_max;
- int k;
-
- fc_array[kmax] = F.val;
-
- for(k=kmax-1; k>=0; k--) {
- double el = eta/lam;
- double rl = sqrt(1.0 + el*el);
- double sl = el + lam*x_inv;
- double fc_lm1 = (fcl*sl + fpl)/rl;
- fc_array[k] = fc_lm1;
- fpl = fc_lm1*sl - fcl*rl;
- fcl = fc_lm1;
- lam -= 1.0;
- }
-
- return stat_FG;
- }
- }
-
-
- int
- gsl_sf_coulomb_wave_FG_array(double lam_min, int kmax,
- double eta, double x,
- double * fc_array, double * gc_array,
- double * F_exp, double * G_exp)
- {
- const double x_inv = 1.0/x;
- const double lam_max = lam_min + kmax;
- gsl_sf_result F, Fp;
- gsl_sf_result G, Gp;
-
- int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax,
- &F, &Fp, &G, &Gp, F_exp, G_exp);
-
- double fcl = F.val;
- double fpl = Fp.val;
- double lam = lam_max;
- int k;
-
- double gcl, gpl;
-
- fc_array[kmax] = F.val;
-
- for(k=kmax-1; k>=0; k--) {
- double el = eta/lam;
- double rl = sqrt(1.0 + el*el);
- double sl = el + lam*x_inv;
- double fc_lm1;
- fc_lm1 = (fcl*sl + fpl)/rl;
- fc_array[k] = fc_lm1;
- fpl = fc_lm1*sl - fcl*rl;
- fcl = fc_lm1;
- lam -= 1.0;
- }
-
- gcl = G.val;
- gpl = Gp.val;
- lam = lam_min + 1.0;
-
- gc_array[0] = G.val;
-
- for(k=1; k<=kmax; k++) {
- double el = eta/lam;
- double rl = sqrt(1.0 + el*el);
- double sl = el + lam*x_inv;
- double gcl1 = (sl*gcl - gpl)/rl;
- gc_array[k] = gcl1;
- gpl = rl*gcl - sl*gcl1;
- gcl = gcl1;
- lam += 1.0;
- }
-
- return stat_FG;
- }
-
-
- int
- gsl_sf_coulomb_wave_FGp_array(double lam_min, int kmax,
- double eta, double x,
- double * fc_array, double * fcp_array,
- double * gc_array, double * gcp_array,
- double * F_exp, double * G_exp)
-
- {
- const double x_inv = 1.0/x;
- const double lam_max = lam_min + kmax;
- gsl_sf_result F, Fp;
- gsl_sf_result G, Gp;
-
- int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax,
- &F, &Fp, &G, &Gp, F_exp, G_exp);
-
- double fcl = F.val;
- double fpl = Fp.val;
- double lam = lam_max;
- int k;
-
- double gcl, gpl;
-
- fc_array[kmax] = F.val;
- fcp_array[kmax] = Fp.val;
-
- for(k=kmax-1; k>=0; k--) {
- double el = eta/lam;
- double rl = sqrt(1.0 + el*el);
- double sl = el + lam*x_inv;
- double fc_lm1;
- fc_lm1 = (fcl*sl + fpl)/rl;
- fc_array[k] = fc_lm1;
- fpl = fc_lm1*sl - fcl*rl;
- fcp_array[k] = fpl;
- fcl = fc_lm1;
- lam -= 1.0;
- }
-
- gcl = G.val;
- gpl = Gp.val;
- lam = lam_min + 1.0;
-
- gc_array[0] = G.val;
- gcp_array[0] = Gp.val;
-
- for(k=1; k<=kmax; k++) {
- double el = eta/lam;
- double rl = sqrt(1.0 + el*el);
- double sl = el + lam*x_inv;
- double gcl1 = (sl*gcl - gpl)/rl;
- gc_array[k] = gcl1;
- gpl = rl*gcl - sl*gcl1;
- gcp_array[k] = gpl;
- gcl = gcl1;
- lam += 1.0;
- }
-
- return stat_FG;
- }
-
-
- int
- gsl_sf_coulomb_wave_sphF_array(double lam_min, int kmax,
- double eta, double x,
- double * fc_array,
- double * F_exp)
- {
- int k;
-
- if(x < 0.0 || lam_min < -0.5) {
- GSL_ERROR ("domain error", GSL_EDOM);
- }
- else if(x < 10.0/GSL_DBL_MAX) {
- for(k=0; k<=kmax; k++) {
- fc_array[k] = 0.0;
- }
- if(lam_min == 0.0) {
- fc_array[0] = sqrt(C0sq(eta));
- }
- *F_exp = 0.0;
- if(x == 0.0)
- return GSL_SUCCESS;
- else
- GSL_ERROR ("underflow", GSL_EUNDRFLW);
- }
- else {
- int k;
- int stat_F = gsl_sf_coulomb_wave_F_array(lam_min, kmax,
- eta, x,
- fc_array,
- F_exp);
-
- for(k=0; k<=kmax; k++) {
- fc_array[k] = fc_array[k] / x;
- }
- return stat_F;
- }
- }
-
-
-